lunes, 5 de octubre de 2015

Tipos de Funciones

Una función (f) es una relación entre un conjunto dado X (llamado dominio) y otro conjunto de elementos Y (llamado condominio) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del condominio (los que forman el recorrido, rango o ámbito).
De manera más simple: Una función es una relación entre dos magnitudes, de tal manera que a cada valor de la primera corresponde un único valor de la segunda.

Una función de la forma f(x) = b, donde b es una constante, se conoce como una función constante.
Por ejemplo, f(x) = 3, (que corresponde al valor de y) donde el dominio es el conjunto de los números reales y el recorrido es {3}, por tanto y = 3.  


Una función de la forma f(x) = mx + b se conoce como una función lineal, donde m representa la pendiente y b representa el intercepto en y. La representación gráfica de una función lineal es una recta. Las funciones lineales son funciones polinómicas.
Ejemplo:
F(x) = 2x - 1



Función polinómica:

El dominio de todas estas funciones polinómicas es el conjunto de los números reales (porque el elemento x puede ser cualquier número real).

Función cuadrática
Una función de la forma f(x) = ax2 + bx + c, donde a, b y c son constantes y a es diferente de cero, se conoce como una función cuadrática.
La representación gráfica de una función cuadrática es una parábola. Una parábola abre hacia arriba si a > 0 y abre hacia abajo si a < 0.  El vértice de una parábola se determina por la fórmula

Las funciones cuadráticas son funciones polinómicas.

Una función racional es el cociente de dos funciones polinómicas. Así es que q es una función racional si para todo x en el dominio, se tiene:

Se llama función logarítmica a la función real de variable real:

La función exponencial (de base e) es una función real que tiene la propiedad de que al ser derivada se obtiene la misma función.

Funciones trascendentes: Cuando la variable independiente, x, forma parte del exponente o da la base de un logaritmo; o simplemente se ve afectada por una función, como puede ser en la trigonometría, entonces hablamos de funciones trascendentes.

Función explícita: Cuando podemos obtener los valores de y directamente dando valores a nuestra variable independiente, es decir, cuando la variable y está despejada.

Función implícita: Cuando, al contrario que en el caso anterior, tenemos que realizar operaciones para halla el valor de la y una vez que le hemos dado un valor a la x: 3x+2y=1

 

Funciones polinómica de primer grado

f(x) = mx + n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Funciones explícitas
Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2
Funciones implícitas
Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0

Funciones polinómicas
Son las funciones que vienen definidas por un polinomio.
f(x) = a+ a1x + a2x² + a2x³ +··· + anxn
Su dominio es R, es decir, cualquier número real tiene imagen.


Funciones inversa
El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.

La función logarítmica: en base a es la función inversa de la exponencial en base a.


No hay comentarios:

Publicar un comentario