lunes, 5 de octubre de 2015

Inyectivo, sobrayectiva.

Puedes entender una función como una manera de conectar elementos de un conjunto "A" a los de otro conjunto "B":
Funciones general, inyectiva, sobreyectiva y biyectiva
"Inyectiva" significa que cada elemento de "B" tiene como mucho uno de "A" al que corresponde (pero esto no nos dice que todos los elementos de "B" tengan alguno en "A").
"Sobrayectiva" significa que cada elemento de "B" tiene por lo menos uno de "A" (a lo mejor más de uno).

Definiciones formales

Inyectiva

Una función f es inyectiva si, cuando f(x) = f(y)x = y.
Ejemplo: f(x) = x2 del conjunto de los números naturales naturales a naturales es una función inyectiva.
(Pero f(x) = x2 no es inyectiva cuando es desde el conjunto de enteros enteros (esto incluye números negativos) porque tienes por ejemplo
  • f(2) = 4 y
  • f(-2) = 4)
Nota: inyectiva también se llama "uno a uno", pero esto se confunde porque suena un poco como si fuera biyectiva.

Sobrayectiva

Una función f (de un conjunto A a otro B) es sobreyectiva si para cada y en B, existe por lo menos un x en Aque cumple f(x) = y, en otras palabras f es sobreyectiva si y sólo si f(A) = B.
Así que cada elemento de la imagen corresponde con un elemento del dominio por lo menos.
Ejemplo: la función f(x) = 2x del conjunto de los números naturales naturales al de los números pares no negativos es sobreyectiva.
Sin embargo, f(x) = 2x del conjunto de los números naturales naturales a naturales no es sobreyectiva, porque, por ejemplo, ningún elemento de naturales va al 3 por esta función.

No hay comentarios:

Publicar un comentario